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MULTICONSTRAINED VARIATIONAL PROBLEMS 
OF NONLINEAR EIGENVALUE TYPE: 

NEW FORMULATIONS AND ALGORITHMS 

ALEXANDER EYDELAND, JOEL SPRUCK, AND BRUCE TURKINGTON 

ABSTRACT. A new variational approach is proposed for a class of semilinear el- 
liptic eigenvalue problems involving many eigenvalue parameters. These prob- 
lems arise, for instance, in the modelling of magnetohydrodynamic equilibria 
with one spatial symmetry. In this case, the physical variational principle im- 
poses a continuously infinite family of constraints, which prescribes the mass 
and helicity within every flux tube. The equilibrium equations therefore con- 
tain unspecified profile functions that are determined along with the solution as 
multipliers for those constraints. A prototype problem for this general class is 
formulated, and a natural discretization of its constraint family is introduced. 
The resulting multiconstrained minimization problem is solved by an iterative 
algorithm, which is based on relaxation of the given nonlinear equality con- 
straints to linearized inequalities at each iteration. By appealing to convexity 
properties, the monotonicity and global convergence of this algorithm is proved. 
The explicit construction of the iterative sequence is obtained by a dual varia- 
tional characterization. 

1. INTRODUCTION 

Many equilibrium problems in mathematical physics can be formulated as 
nonlinear elliptic eigenvalue problems. A mathematical prototype for this wide 
class of problems is expressible as 

(1.1) -Au = A(u) in Q, u=O onOQ, 

where u = u(x) is a real-valued function defined in a domain Q C IN . The 
term A(u), which we shall call the profile function, is traditionally assumed to 
have the form A(u) = Af'(u), where f'(u) is a specified function and A is an 
eigenvalue parameter. Then, well-understood analytical and numerical methods 
apply to (1. 1). In particular, solution pairs (u, A) can be constructed by solving 
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the constrained minimization problem 

(1.2) E(u) := 
I 

IVU12 dx -+min over f(u) dx = y 

for various constraint values y. The existence of a family of solutions parame- 
trized by y can be proved, using standard variational techniques, whenever 
(say) f(O) = f4(0) = 0, f is convex, and f satisfies some growth conditions 
as Iu I- 0. Moreover, effective numerical methods are available for computing 
these solutions (see, for instance, Glowinski [1 1]). 

In certain physical problems, however, it is not natural to prescribe the form 
of the profile functions that occur in the equilibrium equations. Rather, it is 
necessary to characterize an equilibrium solution as an energy minimizer subject 
to a possibly infinite family of constraints derived from the conserved quanti- 
ties associated with the governing evolution equations. The prescribed data in 
such a formulation consists of the family of constraint values, while the profile 
functions are determined implicitly by the solution. This sort of situation is 
met, for example, in ideal magnetohydrodynamics (MHD), where the natural 
constraints are defined by mass and helicity integrals over (nested) families of 
flux tubes. In particular, magnetostatic equilibrium problems with one spatial 
symmetry have been shown to admit a formulation as multiconstrained min- 
imization problems by Woltjer [21, 22] and Kruskal and Kulsrud [1 5]. Also, 
related variational principles for steady flows of an ideal fluid have been formu- 
lated by Arnold [1, 2] and Benjamin [4]. These classical variational principles 
provide the main physical motivation for the present work, which introduces 
and justifies an algorithm for solving mathematical model problems of this type. 

Alternative approaches to these MHD equilibrium problems have been pro- 
posed in the context of plasma confinement. Grad [ 12], who has emphasized the 
importance of posing these problems in terms of the quantities conserved by the 
ideal MHD equations, has introduced his so-called generalized (or queer) dif- 
ferential equations as the appropriate equilibrium equations. A computational 
technique for solving these equations has been devised by Grad et al. [1 3], and 
some related analytical studies have been made by Temam [20], Mossino and 
Temam [1 8], and Laurence and Stredulinsky [16]. All of these investigations 
confront the central difficulty (and novelty) inherent in generalized differential 
equations-namely, their highly implicit definition involving differentiation of 
the distribution function of the solution. A different approach has been devel- 
oped by Bauer, Betancourt, and Garabedian [5], in which the family of con- 
straints is eliminated by reformulating the standard equilibrium equations in 
a special coordinate system derived from the (unknown) flux functions. This 
leads to an unconstrained minimization problem which can be treated computa- 
tionally even without a symmetry assumption, but which involves an objective 
(energy) functional with a rather complicated analytical structure. A similar 
approach using flux coordinates has been applied to astrophysical problems by 
Mouschovias [17]. 
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In contrast to these works, our approach is based on a direct treatment of 
the nonlinear constrained optimization problems resulting from the classical 
variational principles for equilibrium MHD. As a prototype for this class of 
problems, we adopt the variational problem (PO,) 

(1.3) E(u) -min over f(u-cr)+ dx=I3(c), O< a < +c, 

where fl(a) is suitable prescribed data. A formal calculation suggests that the 
variational equation satisfied by a solution u of (1.3) has the form (1.1) with a 
profile function (or distribution) determined by the usual (but formal) Lagrange 
multiplier rule. In order to justify such a calculation, we find it necessary to 
replace the infinite family of constraints in (Pa ) by an appropriate finite family 
that approximates it. Thus, we introduce the variational problem (Pn) 

( 1.4) E(u) - min over Fi(u) :=|fi(u) dx = yi (i = 1, .. , n) , 

where the functions Ji(s) and the constraint values yi are chosen relative to a 
given partition of the interval 0 < a < +x into n subintervals 0 = co < a, < 
* < an l < an = +oo according to 

(1.5) 17(s): f (s -a)+ do, 2i:= ,8v(a) do. 

If the prescribed data satisfy yi > 0 for every i, then a nonnegative solution 
u E Ho(Q) of (Pn) exists, is smooth, and satisfies (1.1) with 

n 

(1.6) A(u)= E (u) 
1=1 

where i E IR are precisely the Lagrange multipliers (Theorem 2.2). 
It should be emphasized that the finitely-constrained problem (Pn) yields 

exact solutions of the relevant equations (say the ideal MHD equations) and 
is an approximation only in the sense that the family of constraints in (1.3) is 
discretized. In this discretization, the functions Ji'(u) (i = 1, ... , n) form a 
basis for the space of all profile functions A(u) which, according to (1.6), are 
piecewise linear relative to the given partition. This particular choice of basis 
functions plays a key role in our formulation of (PI). 

Besides being analytically tractable, the problem (Pn) is amenable to a nu- 
merical method of solution, the development of which is the principal goal of 
this paper. To this end, we construct an iterative procedure which is designed to 
converge to the solutions of (PI) . This procedure, which we term the algorithm 
(An), may be stated succinctly as follows: the iterate u'k+ is found from the 
previous iterate u k by solving the convex optimization problem 

(1.7) E,(u) E(u) + T(u, u) mim 

over F,(u k) + (FiJ () u - u k)? , i= 1, . ..., n. 
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Thus, each iterative step is defined by solving a variational problem in which 
the objective functional is modified by a quadratic term involving a positive 
constant a, and the n constraints are replaced by n linearized inequalities. 
As a consequence, each such step admits a simple and efficient numerical im- 
plementation. 

Perhaps our main result (Theorem 4.1) is the justification of this algorithm. 
This result may be expressed as follows: given any initialization u0 E Ho (Q) 
satisfying the constraints for (PI), there exists a (sufficiently large) constant T 
depending on E(u0) and yi, ai so that the sequence {uk} generated by the 
algorithm (An) converges strongly in Ho (Q) to the set of critical points of the 
variational problem (Pn), in the sense that the (minimum) distance from uk 
to that set tends to zero as k tends to infinity. This generalized convergence 
theorem holds even in the case when solutions of (Pn) are not unique. 

In a forthcoming paper [8], we will discuss the implementation of the algo- 
rithm (An) and the results of numerical experiments. We will also extend the 
algorithm so as to apply to the more general problems discussed in Appendix 1 
(?6). Suffice it to say here that for the model problem (Pn) the entire iterative 
sequence {uk} is observed (at least typically) to converge with a linear rate to 
a unique solution. 

We now give the organization of the paper. In ?2, we formulate the prototype 
finite constraint problem (Pn) and establish its relation to the problem (Pa,). 
Section 2 also contains the proof of Theorem 2.2, which illustrates in a very clear 
way some of the fundamental ideas of classical optimization theory; specifically, 
Lemma 2.3 and its relation to the linear independence of the constraints is 
of independent interest. In ?3, we describe the algorithm (An) for solving 
(PI) and derive its basic convergence properties. In addition, we give a more 
concrete description of the algorithm in terms of the so-called dual variational 
problem. Section 4 completes the proof of the convergence of the algorithm 
(Theorem 4.1). The key step in the proof of convergence is an a priori estimate 
on Lagrange multipliers (Lemma 4.3) which is of independent interest. In ? 5, 
we briefly indicate how to extend the development of ??2-4 to include a free 
boundary interface, to allow for distributions which change sign, and finally to 
apply to a more general class of variational problems. Appendix 1 contains a 
brief discussion of the fundamental variational problems in MHD equilibrium 
theory which partly motivate our prototype problems. In future work we plan 
to elaborate on the methods and ideas of the present paper in order to study 
the more general problems posed in Appendix 1. 

The following conventional notations will be used in the sequel. Let Q C RN 

(N > 2) be a bounded open set whose boundary, OQ, is smooth enough (say 
C 2,). We denote the Lebesgue measure on Q by dx = dx1 dxN, X = 
(X1, ... , XN) E Q, and for any measurable subset A C Q we write IAI = fA dx 
for its measure. The inner product and norm on L2(Q) are denoted by 



VARIATIONAL PROBLEMS OF NONLINEAR EIGENVALUE TYPE 513 

(u, v)= u(x)v(x)dx, ulluI = (u, u)112. 

The Sobolev space Hm (Q) (m = 1, 2, ...) is identified with the space of 
those functions in L2 (2) whose (weak) partial derivatives of order < m are in 

2 L (Q) . The space Ho (Q) consists of those functions which vanish in the weak 

sense on aQ, and H 1(Q) is its dual with respect to the pairing (., -). The 
class of continuous functions on K? = Q U 0Q is denoted by Co(?), and Cm(Q?) 
(m = 1, 2, ...) denotes the class of m times continuously differentiable func- 
tions. Also, Cm 0(Q) (O < 0 < 1) is the subclass of Cm (Q) consisting of those 
functions whose derivatives of order m are Holder continuous with exponent 
0 . Throughout the paper, we make use of the function +$(u) = (u - a)+ , where 
s+=max(s,O) for seR. 

2. FORMULATION OF THE PROBLEMS (Pa) AND (PO) 

We begin by posing the problem (POO), which we adopt as a model for the 
type of variational problems presented in Appendix 1, where we refer the reader 
for an indication of the source of these problems in mathematical physics. For 
a given function !I E Ho (Q), we consider the class of functions which are 
equimeasurable with 17, namely, 

(2.1) M,(1) =U{ E Ho (Q): i{u > a}l = I{ > a} for all a E R}. 

The class M. (ui) consists of all functions u in Ho (Q) which are rearrange- 
ments of -a with respect to Lebesgue measure dx on Q. This characterization 
can be phrased in terms of the standard rearrangement mapping [18] u - u* 
defined by 

(2.2) U*(a) := inf{a e R1: I{u > a}l > a} (0 < a < II). 
Then we see that 

(2.3) M.o(u) = { E H'(Q): u* (a) = u*(a) for all 0 < a < AII 
For the purposes of the present study, however, we prefer to define the class 

M. (1a) in terms of a certain infinite family of integral constraints. 

Lemma 2.1. The following statements are equivalent: 

(a) ueM. (1a), 

(2.4) (b) f0(u) dx = f 0(u) dx for all 0 < q E CO(R), 

(c) (u - a)+ dx= (a - a)+ dx for all a E R. 

Proof. That (a) implies (b) is standard; (a) is equivalent to (b) for functions of 
the form 

00 s < C, 
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and so (b) holds for any function 0(s) which is an increasing limit of step 
functions (in fact, for any nonnegative Borel measurable function 0(s)). That 
(b) implies (c) is trivial. That (c) implies (a) follows from differentiation of (c) 
with respect to the variable a. Precisely, the right derivative with respect to a 
yields the desired result, since 

T&1[(S - T - T)+ - (S - a)+] j 1, <- as T 1 0; 

then, by virtue of monotone convergence, it follows that 

lirM T {f(u a - T)+ dx - f(u - a)+ dx} = I{u> a}I 

for every a, and similarly with H replacing u. This proves the claimed equiv- 
alence. o 

The problem (POO) is a constrained minimization problem whose objective 
functional is 

(2.5) E(u) : f IVUI2 dx, 

and whose family of constraints is defined by (2.4). For a given H E H0I (Q) 
with H > 0 a.e. in Q, we pose the variational problem (Pa,) 

(2.6) E(u) -min over u E Mo(). 
We assume that H is nonnegative for the sake of simplicity in the exposition 
here, deferring the general case until ?5. Equivalently, (PO,) may be written 
explicitly in terms of its constraints as 

(2.7) E(u) - min subject to J(u - a)+ dx = 38(a), 0 < a < +00, 

where ,8(a) :f= fn( - a)+ dx may be viewed as given data. 
The existence of a solution u E HOI (Q) of (P ) is straightforward (using the 

method of Theorem 2.2). On the other hand, the construction of an appropriate 
variational equation (a Lagrange multiplier rule) satisfied by such a solution is 
not routine, and indeed remains an unanswered question. Equally unclear is 
the question of the (optimal) regularity of the solution. The main source of 
difficulty in investigating these questions is, of course, the nature of the infinite 
family of constraints. With this in mind, we therefore proceed to formulate 
the problem (Pn), which replaces the family of constraints in (Pa0) by a finite 
family of simpler constraints, and which approximates (Pa,) when n is large. 
Thus, (Pn) may be viewed as the natural discretization of (Pa,). 

We introduce a partition {ai}7n 0 of the interval 0 < a < +x into n subin- 
tervals 0 = ao 1 a< ..< an- < an = +X0. For a partition of this kind, we 
define the constraint functionals 

(2.8) F1(u) := = fi(u)dx (i = 1, .. .,n), 
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where 

(2.9) f1(s) J_ (s - a)+da = (s - a 2- _(s -S 2 

for s e IR. Then we let 

(2.10) M(9) = {fU E Ho(Q): Fi(u) = Fi() for all i = 1, ...,n}. 

It is easy to verify that M. (1u) C Mn (19) for any n, and that if a sequence 
of partitions is taken so that max1<i<n_ l(vi - vi-l ) 0 and an- I+ 

+00 as 
n -* +00, then Moo(a) = An Mn (a), the class Mn (17) being defined by the nth 

partition in the sequence. If 17 E Co(Q), then it is not necessary that an -I 
+xo for this conclusion to hold, but rather it suffices that an-2 < supn U < 'n- I 

The problem (Pa) is the following multiconstrained minimization problem: 

(2.11) E(u) -+min over u E Mn(U). 
Equivalently, (Pn) may be expressed as 

(2.12) E(u) -Gmin subject to Fi(u) = yi (i = 1, ..., n), 

where yi := Fi(1) = f' fl (a) dca may be viewed as given data. The existence 

of a solution of (Pn) and the form of the variational equation that it satisfies 
are given in the next theorem. 

Theorem 2.2. If -7 and {fa}7in are given so that yi > 0 for every i, then there 
exists a minimizer u for (Pn) satisfying 

(a) U E C2 0(Q) for every 0 < 0 < 1, 

(2.13) (b) u > 0 in Q, 
n 

(c) - Au AiZJ(u) for some Ai E R. 
i= 1 

Proof. We invoke a standard argument to establish the existence of u. Let 
U E Mn (U) be a minimizing sequence in the sense that 

lim E(uj) = inf{E(a): i E Mn(U) i-*oo 

The sequence uj, being bounded in Ho (Q), has a subsequence which con- 

verges weakly in Ho (Q) to a limit u. We write this subsequence as uj, after 
reindexing, and we have 

E(u) < lim E(uj) = inf{E(ii): i E Mn(U)}, 
j-*Coo 

Fi (u) = lim F. (uj) = yi for each i = 1,5 ... , n , 
j-*oo I 

using, respectively, the lower semicontinuity of E with respect to weak conver- 
gence in H1 , and the continuity of each Fi with respect to strong convergence 
in L2 . Thus, the limit u E Ho(Q) solves (Pn). 
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Property (2.13)(b) follows from the observation that uj can be replaced by 

IujI in the above argument without changing the conclusion. (In fact, it is not 
difficult to see that any solution of (2.13) (a),(c) must be nonnegative.) 

The variational equation (2.13) (c) satisfied by u is the standard Lagrange 
multiplier rule. As is shown in the reference text [14, Chapter 1], it suf- 
fices that the functionals E, FI: Ho (Q) -* R be C1 and that the gradients 

Fj (u), ... , F (u) be linearly independent. It is immediate from their defini- 
tions that the functionals involved are Frechet differentiable with 

(E'(u), v) Vu.Vvdx, (Fj.(u)v) = fJ'(u)v dx, 

where 

(2.14) '(S) = (s - ai- )+ - (s - ai)+ (s E R). 

Thus, interpreting these derivatives in the sense of distributions, we have 

(2.15) E'(u)=-AuEH 1(Q), FI (u) = f;(u) E H(Q). 

Moreover, it is now clear that E and F1 are C1 functionals. The crucial linear 
independence of the gradients J' (u) (i = 1, ..., n) will be deduced from the 
following 

Lemma 2.3. Let f E C1 (R) satisfy f(O) = f'(0) = 0, and f" E Loc (R) with 
f"(s) > 0 for almost all s E R. Then for any u E Ho (Q) 

(2.16) f f(u) dx < cNI1 f Vu 1(U)11LN IVU2 dx. 

Proof. The convexity of f(s) implies that 0 = f(0) > f(s) - sf' (s) for all 
s E R11. Hence 

(2.17) ff(u)dx < f uf(u)dx < 11u11L2Hf'(U)1L2. 

The Sobolev inequality then yields 

(2.18) |f(u)HL2 ? CNNIVf(U)IILP ? CNI f(U)IlLN2VUIIL2, 

where 1 < p < 2 is determined by 1/2 = 1/p - 1/N. The following Poincar6 
type inequality results from the combination of (2.17) and (2.18): 

(2.19) f (u) dx < cN|UML2 11f (U)11LNIVuHL 2 . 

When this inequality is specialized to the case f(s) = , the standard Poincare 
inequality ensues, namely, 

IIUI<L2 ? 2cNIQI/N VuIL2 

The claimed inequality (2.16) now follows upon substituting the latter in 

(2.1 9). o 
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Indeed, now applying Lemma 2.3 to fi(u), we find that each of the sets 
{i- I < u < ai} has strictly positive measure (with a lower bound depend- 
ing only on upper bounds for yi , E(u), and IQI), since 17'(u) = 1 in 

{vi-l < u < ai} and ji"(u) = 0 elsewhere. Thus, if for some c E IlR the 
identity 0 = En=1 c f1'(u) holds a.e. in Q, then by restricting this identity to 
the sets {val < u < vi} we find successively that c =0, c2 = 0, ...,Cn = 0. 
Hence, the required linear independence of the gradients of the constraint func- 
tionals is proved, and so (2.13)(c) follows for some Lagrange multipliers Ai 
(i = 1, ... , n) uniquely determined by u. 

Finally, the smoothness of u stated in (2.13)(a) can be derived from the 
standard regularity theory for elliptic partial differential equations [10]. In 
terms of the Green function g(x ,x'), x, x' E Q ,defined by -Axg(x, x') = 

5(x-x') for x E Q, g(x, x') = 0 for x E OQ, we have 
I' ~~~~~~~~~~~~n 

(2.20) u(x) g(x, x')A(u(x')) dx' with A(s) Rit((s). 

Since IA(u)I < (maxl<i<nIAQi)IuI, we obtain u, A(u) E L' (Q), using a stan- 
dard argument. Now differentiating (2.20) in x, we find that u E Cl (Q). 
Thus, A(u) E C 'l(Q), and this is optimal since the Lipschitz function A(s) 
is piecewise linear. The statement (2.13)(a) that u E C2' 0(Q) is therefore a 
consequence of the global Schauder estimates applied to the equation (2.1 3)(c). 
(It is assumed here that OQ is of class C2 0, at least.) This completes the 
proof of Theorem 2.2. a 

The function A(s) occurring in (2.20) will play a key role in our subsequent 
analysis and will be referred to as the profile function associated with a solution 
u. For later reference we record its definition: 

(2.21) A(s)= { Z_ ti(s) if s < 0, 

_i S ifs > 0 

where Al, ... , An are real constants (the multipliers in Theorem 2.2). The basis 
functions f1'(s), i = 1, ... , n, each member of which is monotone, is related 
to the standard basis consisting of finite elements Xi(s) for the partition (or 
grid) {a ai} 0 by the formulas 

|j/iS i (S) /AC,- fl (s) /ai+ I (i =1, . . n - 2),5 

=nIs f'1()/aS1, q$(s l (/n-1() 4-i(S)l/an-1 5 O/n (S) = n(S 

where Aai = vi - ai-l denotes the increments. At least when 1 < i < n - 2, 
each piecewise linear Xi(s) is supported on the interval ai-l < s < ai+, and is 
normalized by qi(oi) = 1 . In terms of these finite elements, the profile function 
is represented as 

{ 0 if s < 0 
A(s) = Zni71' A.ii(S) + Anq(S) if s > 0, 
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where Ai = A(ai); in other words, A(s) on 0 < s < 'n-I is identified with the 
linear interpolant of its values Ai at the partition points (or grid nodes) vi. 
The representation (2.21) in terms of the monotone basis functions /' (s) will 
be used throughout the sequel, however. Its importance stems from the fact 
that the constraint functionals Fi, like the objective functional E, are convex 
for this choice of the basis functions fi(s) . 

Furthermore, it is a consequence of the definition of fi(s) in (2.9) that 
n 

(2.22) i f(S) = 2 (s E R) 
i=1 

Therefore, any admissible function u E Mn(ii) satisfies 

(2.23) - u dx = S = -a dx. 
i= 1 

Indeed, if n = 1 (and so q0 = 0 and a1 = +oo), then the class Ml(u) is 
characterized precisely by the single constraint (2.23). In view of this fact, 
we may say that the problem (Pn) constitutes a generalization of the clas- 
sical Rayleigh principle [6, Chapter VI] characterizing variationally the first 
eigenvalue-eigenfunction pair for the Laplacian operator -A on Ho (Q) . In 
going from the linear problem (P,) to the general (and nonlinear) problem 

(Pn), the single L2(Q)-normalization IIUII2 = 2y (= 1, say) is replaced by 
the family of constraints Fi(u) = yi (i = 1, ..., n), which in effect amounts 

to constraining n L 2(Q)-expressions involving the lower truncations (u - uj)+ 
of u; specifically, the constraints for (Pn) can be written as 

(2.24) II(u - i1)+I12 - II(u - Ui)+lI22 = 2yi (i = 1, . . ., n). 
The family of constraints (2.24) is therefore seen to be a strengthening of the 
single constraint (2.23) in the usual Rayleigh principle (P,). 

The sense in which a solution u(n) of (Pn) approximates a solution u(??) 
(say) of (Pa,) as n -+ +00 can now be determined. As mentioned above, we 
suppose that a sequence of partitions is taken with max1<i<n 1(Ui 

- 
ui-1) 0 

and un-+ +00 as n -+ 00, so that we are assured that M-Rjo) = nn Mn (a); 

if uI E CO(Q), then we suppose instead that an-2 < Supnu < Un-1, with 

max1<i<n-1(U; - i-_) -+ 0 as n -* +00. By virtue of the bound E(u W)) < 

E(u9) < +00, every subsequence of {u(n) }'1 has a further subsequence that 
converges weakly in H4 and strongly in L2. If we let u(?? E H4 (Q) denote 
a limit point of the solution sequence u(n) for the multiconstrained problems 
(Pn) , then we claim that u(?) is a solution of the (infinitely-constrained) prob- 
lem (P.,). Indeed, any admissible function i e M.() for (P.,) is admissible 
for each problem (Pn), and hence, using the weak HO -convergence, E(u(??)) ? 
lim infE(u(n)) < E(ui), where n is understood to tend to infinity along the sub- 
sequence. Also, using the strong L -convergence, it is straightforward to verify 
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that u(00) E Mo(u), because it is evident that for any a E (0, +oo) 

](ua -)+ dx = nlim fi(u) dx, n-~oo Aauj 

where i = i(n, a) is chosen so that a E [ai-l ai) for each sufficiently large 
n. (We recall that Aai := vi - ai-l and fi is given by (2.9).) Thus the claim 
that u(00) solves (PO,) follows. 

This result can be stated in the form 

(2.25) distL2(u(n), S.) 
- O as n - +x 

where Soo is defined to be the set of solutions of (POc) for a given function 

ii; the distance function distL2 (u, 59) from a point u to a set 5 C L 2(Q) 
is defined by distL2(u, 5) = inf{ lu - VHlL2: v E 5}. That (2.25) is true is 
obvious from the above discussion. We remark that it is necessary to consider 
the set of solutions of (PO,), since the uniqueness of its solutions has not been 
established and, in fact, may not hold in general. The statement (2.25) allows us 
to conclude, at least, that for large n the solution u(n) of (Pn) approximates 
some solution of (PO,) in the L 2(Q)-norm. This conclusion justifies in part 
the discretization of the constraints for (PO,) resulting in the finitely many 
constraints for (Pn) . 

Before passing to the discussion of the algorithm for solving (Pa), we note 
that a variant of this problem can also be employed. We now assume that 
- 

E H0 (Q) n C0(Q) and let an = supQ H (rather than an = +oo) . With respect 
to a partition 0 = ao < a1 < < an-I < arn we consider the problem (Ps) 

E(u) -* min over u E Mn(H), u < an a.e. in Q. 

This problem is of variational inequality type [9, Chapters 1 and 2], being 
an obstacle problem with n additional constraints. It can be shown that the 
analogue of Theorem 2.2 holds in the sense that there is a solution u E H~' (Q) n 
C1'1 (Q) satisfying the equation 

n 

-Au=Z2iy<(u) in{u<an}CQ. 
i=1 

(If {u = an } has positive measure, then u is not necessarily twice continuously 
differentiable, of course.) However, we shall restrict our further discussion to 
(Pa), leaving the parallel development for (Ps) to the reader. 

3. DESCRIPTION OF THE ALGORITHM (An) 

We now proceed to define an iterative procedure which is designed to con- 
verge to the solutions of (Pn). 

For a (fixed) positive constant a, let El be the modified objective functional 

(3.1) E (U) = E(u) + = l f H uIV + u]dx. 
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Also, for any v E Ho (Q), let Ln (v) be the class of admissible functions 

(3.2) L (v) ={u E H (Q): Fi(v) + (F' (v), u - v) > ?y for all i}. 

We notice that in contrast to the class Mn (1), which is defined by n nonlinear 
equality constraints, the class Ln (v) is defined by n linear (actually affine) 
inequality constraints. (Ln(v) depends upon li through the constants yi = 
F(~i), but this dependence will not be emphasized in the notation.) In terms of 

k k I these definitions we construct a sequence of approximations (u , A ) E Ho (Q) x 
Rn to the solutions of the variational problem (Pn) as follows. 

0 Uk k 1k E In Algorithm (An). Given u E MnQi), let (u , ji ) E Ho(Q) x [O, +oo) be 
defined iteratively by solving the sequence of convex optimization problems 

(3.3) El(u) - min over uELn(uk), 

where uk+l is the (unique) solution, and y k+l is the corresponding n-vector 
of nonnegative multipliers (uniquely determined by uk+l); then let 

(3.4) A ~k+l = jk+l -T 

The algorithm (An) produces a well-defined sequence of approximations 
once an initialization u0 and a constant T are chosen. It suffices to take u0 = U . 
It will be shown in ?4 that T can be chosen sufficiently large to ensure the con- 
vergence of the iterative sequence { (u, k ) } to the set S* of solutions of the 
problem 

n 

E'(u)= A Fj (u) for some Al, ... An ER, 
(3.5) j=1 

Fj(u) = yi (i= 1, ..., n), 

namely, the set of all critical points for the problem (Pn) which satisfy the given 
constraints (or, equivalently, belong to Mn(19)). In the present discussion, T 

will be viewed as a (fixed) positive parameter. 
The pair (u , kllk+l ) defined in the algorithm (An) is characterized as the 

solution of the equations 
n 

kE (U + ) + TUk+l = Ak+lF' (k) 

(3.6) l 
k+1[ 

pi iF(Uk) + (Fj` (u k), u kl- U 
k 

i Yj= (i = 1,5 ... ., n) . 

Indeed, these equations are precisely the Kuhn-Tucker conditions associated 
with the convex optimization problem (3.3) which defines the iterative step of 
(An). The reader is referred to [14, Chapter 1] for a proof that (3.3) and (3.6) 
are equivalent, provided that there exists some fi e Ln(u k) for which 

F (uk ) + (F (uk), -u k) > yi for every i = 1, .. ., n. 
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This so-called Slater condition follows from the convexity of the functional 
Fi(u), which implies that 

(3.7) F(u ) i Fi(uk ) + (F(uk-1) uk k-1 
) ? 

and that Fi(u k) < (Fi'(uk), u k). Thus, it is readily verified that the Slater 
condition is satisfied by i = (1 + e)uk with e > 0. It should be emphasized 
that the equations (3.6) characterize the pair (uk+l, I1k+l) E Ln(uk) X [0, +oo)n 
when supplemented by the inequalities 

(3.8) Fi(u k) + (Fi (uk ), uk+1 uk) > yi, 

(3.9) k+1 > 0 

for every i= 1, ...,n. The vector yk+1 = (yk+l k+1 ) is the Kuhn- 
Tucker vector corresponding to the solution uk+l of (3.3). 

The above construction of the algorithm (An) depends fundamentally on 
the convexity of the optimization problem (3.3); namely, it relies on the strict 
convexity of the objective functional ET and the convexity of the class of ad- 
missible functions Ln (Uk), which is defined by n affine inequality constraints. 
The uniqueness of a minimizer u k+ for (3.3) follows immediately from these 
attributes. In turn, the uniqueness of the Kuhn-Tucker vector jik+1 follows 
from the smoothness of the objective and constraint functionals and the lin- 
ear independence of the gradients Fi<(uk). The latter property can be proved 
exactly as in the proof of Theorem 2.2, now using (3.7) with yi > 0. 

Next we describe a more explicit construction of the iterative procedure (An) 
which furnishes us with a concrete numerical implementation of the algorithm. 
Let GT denote the Green operator for the elliptic boundary value problem 

(3.10) -Aw+ Tw= h in Q, w=0 onOQ; 

that is, the solution is represented as w = GT h, where GT: L2(Q) -? Ho (Q) n 

H (Q) . For any v E Ho (Q), let (recall (2.14), (2.1 5)) 

(3.1~~ ~ ~~~~ 1 ij (v) := i ((v) , G T;(v)) 

(3.12) ci(v) := Ei-Fi(v) + (Fi (v), v) 

for i, j = 1, ... , n . (The dependence of these expressions on T is left implicit, 
for the sake of simplicity in the notation.) We consider the quadratic form 

In n n 

(3.13) Q(,; v) := - E aij(V)Pi/j - 1: ai (yu E1 R) 
ij=l i=1 

This defines a positive definite quadratic form on Rin whenever {fx E Q: ai-1 < 
v(x) < a}I > 0 for every i = 1, ..., n . We check this fact by calculating 

n 

E ai (v)yiyj = (j.*f'(v), GL *TI (v)I), 
iJ=1 
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where we write ,u f'(v) = EZn7 juIJ(v) . We then notice that the latter expres- 
sion is zero if and only if ji f'J(v) = 0 a.e. in Q. Arguing as in the proof 
of Theorem 2.2, we deduce that 1 = 0, 92 = 0, ... , An = 0 successively, as 
required. 

We now claim that the algorithm (An) is equivalent to the following explicit 
0 k k In 

iterative procedure: for u E Mn(T), let (u, ) E (Q) x [O, +oo) be 

defined iteratively by 

n 

(3.14) 
k 

,U1 
k+ 

j=1 

where 

(3.15) w GTJ(u k), 

(3.16) A 
k+1 

= argkminfQ(;uk):Pi > 0, i 1, n 

In other words, (u k+, ik+1 ) is constructed from uk in a three-step process: 
(1) each w is found by solving (3.10) with h = J(uk); (2) 1 k+1 is taken to 
be the unique solution of the quadratic programming problem (3.16); and (3) 

uk+1 is assembled from y k+1 and wj according to (3.14). The verification of 

the claim that this procedure is equivalent to (An), as stated earlier, is stan- 

dard. Calculating the variational inequalities satisfied by the minimizer ik+ 
of (3.16), we have for each i = 1, ..., n 

n > 0 if P~~~~~k+1 =0 
(3.17) k k+ k) ifu 0 

Also, combining (3.14) and (3.15), we have 

n 

(3.18) -Auk+l + TU Z = k+lf(uk) in Q . u =0 on 9Q. 
j=1 

It is clear that (3.18) is a restatement of the first equation in (3.6); in turn, it 

is evident from the definitions of aij and ci that (3.17) is equivalent to the 

second equation in (3.6) together with the inequalities (3.8) and (3.9), which 

supplement it. Thus the claimed equivalence of the two forms of the algorithm 

is verified. 

It is interesting to note that the optimization problems (3.16) and (3.3) are 

dual problems in the sense of convex analysis [19, ?30]. Indeed, we can directly 

verify that 

-Q(Y; uk) =min {ET() Z si[(Fi(u) u) )-ci(u )]: u E H (Q)} 

The general theory of convex analysis informs us that the Kuhn-Tucker vector 
k+1 corresponding to the minimizer u k+ for (3.3) is itself the maximizer for 
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the dual problem: 

-Q(,u;u ) k max over pi>0 (i=l,...,n). 

The preceding construction of the explicit form of the iterative procedure (An) 
may therefore be viewed as a specific case of the general duality theory. We 
shall not need this level of generality in the sequel, however. 

The algorithm (An) is devised to exploit as much as possible the important 
fact that the objective and constraint functionals for the variational problem 
(Pn) are convex. Even though (Pn) itself is not a convex optimization prob- 
lem, because its constraints are nonlinear equalities, its convexity attributes are 
enough to imply that the iterative sequence defined by (An) has very special 
monotonicity and convergence properties. These properties are the focus of our 
attention in the next two lemmas. 

Lemma 3.1. For every k we have 

(3.19) E(u k+1 - uk) < E (uk)- E(Uk+l) 
k+1 0 

(3.20) E(u ) < E(u ). 
Proof. To prove (3.19), we use the identity 

(3.21) E(k) E ( k+l jE/( k+l )Uk 
_ 

Uk+1) + E(k+l - ) k 

By virtue of (3.7) we have u E Ln(uk) . Therefore, (1 - t)u k+ + tuk E Ln(uk 

for all 0 < t < 1, as this class of functions is convex. Consequently, since uk+l 

solves (3.3), we get 

E(U 
k+1 

) < E (Uk+ + t(Uk -Uk+1 

E k+1 + t(EI(uk+1 Uk -Uk+1 ) + 0(t 2 

as t -* 0+. Hence, (E'(u k+), Uk - U k+) > 0, and so (3.19) follows from 
(3.21). 

To prove (3.20), we note that 
n n 

uo2= Zi?Ze(uk+l =lk+1 2 

i=1 i=1 

This yields the desired inequality, since 

k(U+ ) k+1 T k+1 2 

< E (u) -HU 11 = E(u0). D 

The above lemma establishes that for any initialization u0 E Mn(H) the se- 

quence E(u k) is nonincreasing. This monotonicity property of the algorithm 

(A,) leads directly to the following (partial) convergence property of the itera- 

tive sequence {u } . 
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Lemma 3.2. Let u E Ho (Q) be any HO-weak limit point of the sequence {uk . 

Then there exists a unique vector ji = n..., un) E Rn such that 

n 

(3.22) El (u) = yE F 
j=1 

(3.23) Yii[JF(u) -1] =0 (i=1,..., n), 

(3.24) pi > .0 FJ(u) >? (i= 1, ... , n). 
Proof. We recognize (3.22)-(3.24) as precisely the Kuhn-Tucker conditions for 
the convex minimization problem 

(3.25) El(ai) -min over E Ln(u), 
and ji as the Kuhn-Tucker vector corresponding to the minimizer u. There- 
fore, it suffices to show that u is indeed the solution of (3.25). Let ukP - u 
weakly in Ho (Q), and hence strongly in L2 (Q), as p -* +oo. Given an arbi- 
trary fi E Ln (u), we consider the perturbation ii + eu with e > 0. Recalling 
the definition of Ln(u), we find that for each i = 1, ... , n 

FJ(u) + (JF(u), (+eu) -u) > yi +e(JF(u), u) > (1 +e)y1. 

This implies that for sufficiently large p 

i(Ukp) + ~-(U 5 (ii + eu) - u ) > (1 + e/2)yi, 

by virtue of the continuity of the terms on the left-hand side of the latter in- 
equality with respect to strong L2 convergence. Consequently, ii + eu E Ln (uk P) 
for sufficiently large p, and so we obtain 

E (u) < E(ukp+' ) <?E(a + eu) 
where in the first inequality we invoke the monotonicity property (3.19) and 
the lower semicontinuity of ET with respect to weak HO-convergence. Since 
this inequality holds for arbitrarily small positive e, we conclude that the limit 
point u solves (3.25), as required. n 

The partial convergence result given in the above lemma provides the first step 
in the proof that the iterates (u k, k) defined by the algorithm (An) converge 
in an appropriate sense to the critical points of (Pa) Indeed, Lemmas 3.1 
and 3.2 together permit us to conclude that any subsequence of the iterative 
sequence {uk } C Ho (Q) has a further subsequence which converges (weakly in 

1 2 
Ho and strongly in L ) to a solution u of (3.22)-(3.24). But (3.22) can be 
written equivalently as 

n 

(3.26) E (u) = JA X1Fj (u), where Aj := Uj - T 

j=1 

in view of the basic identity (2.23), which implies that 
n 

(3.27) ZJ'(s)=S+ (s E R). 
i= 1 
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(Here we also use the fact that u > 0 for every k, and hence u > 0, as follows 

immediately from the explicit form of (An).) Thus, the addition of the term 
T 

JJU112 to the objective functional E(u) has the effect of shifting the multipliers 
by T, sending Ai into Pti = Ai+ T. Accordingly, a solution u of (3.22)-(3.24) is 

a critical point of the variational problem (Pn) provided that pti > 0 for every 
i = 1, . .. , n, since then the constraints must be equalities F](u) = yi for every 

i = 1, ... , n . The latter condition can be ensured by choosing T large enough 

(T > max{O, -ill ... , -in}) depending on the multipliers Ai corresponding 
to any solution u of (3.26). The a priori estimate on max,<i<n JAiJ needed 

to complete this argument is given in Lemma 4.3; it provides the second step 

in the proof of convergence of the algorithm (An). The complete convergence 

result is contained in Theorem 4.1. 

4. CONVERGENCE THEOREMS 

In the previous section, we have studied the algorithm (A n) defined by (3. 1)- 

(3.3). There, the positive constant T is introduced in order to allow us to impose 

linearized inequality constraints at each iteration. In this section, we will show 

that T can be chosen a priori so that the limit points of the algorithm (An) are 

critical points of the problem (Pn) and satisfy its nonlinear equality constraints. 

More precisely, we have the following convergence theorem. 

Theorem 4.1. Given any initialization u0 E Mn(U), there exists a constant C = 

C(Q, E(u0), y y- , (A()- ) such that if T > C, then the iterative sequence 

{uk} defined by the algorithm (An) converges strongly in Ho (Q) to the set S* 
of critical points of the problem (Pn), in the sense that 

distH (uk ,S*) - 0 as k - oo, 

where 

distH (u, S*) = inf{lu-vvlHH: v E S*}. 

Theorem 4.1 says that any subsequence of {u k} has a further subsequence 

which converges strongly in Ho (Q) to an element of S* (that is, a solution of 

(3.5)). In numerical experiments (typically) the entire sequence {u k} converges. 
Although we do not have a convergence result of this kind, we do have the 

following result which indicates that generically there is only one limit. 

Corollary 4.2. Let A(u0) be the set of limit points of algorithm (An) for a given 

u?. Then either (i) A(u ) contains exactly one point, or (ii) A(u ) contains 
infinitely many points, none of which is isolated. 

The key point in the proof of Theorem 4.1 is the following a priori estimate, 

which is of independent interest. 
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Lemma 4.3. Let u E Ho (Q) be a (weak) solution of 
n 

-Au= ZLJ;(u), 
(4.1) 1=1 

Fi (u) = Qfi(u) dx > yi > 0 (i =1, ... ., n) 

with E(u) < E0 < +oo. Then 

maxIAilI<C=C(Q,5E0,y1 * **,yn ,(A) ), 

where Au = mini Au.. 

Assuming the truth of Lemma 4.3 for the moment, let us give the 

Proof of Theorem 4.1. As we indicated in the previous section, Lemmas 3.1 
and 3.2 permit us to conclude that any subsequence of {u k} has a further 
subsequence which converges weakly in Ho(Q) and strongly in L2 () to a 
solution of (4.1) with 

Ai = Hi - T 

By Lemma 4.3 we have that Ai > -C, which means that ui > T - C. Hence, 
if a priori we choose T > C, then we ensure that the multipliers Pti > 0 for 
all i = 1, ..., n. This implies, by Lemma 3.2, that F1(u) = yi; that is, u is a 
critical point of the problem (Pn) . 

In order to complete the proof of Theorem 4.1, we need to show the strong 
1 k Ho (Q)-convergence of the subsequence, which we still call u for convenience. 

To see this, we observe that 

uk+ -UH2I = /VU *kV(Uk+ - u) dx- Vu .*V(u -u) dx 

(4.2) z= k+ If k+1 - ( )fI ( k)dx- Vu V(uk+1 -u) dx 

n 
E k+4 ](u k+1 - U)J/(u) dx + o(1), 

as k - 0. But we claim that the ji k+ are uniformly bounded. Indeed, 

k+1 k krkl ~ 
, L u i7(uk )dx=f [Vu k+ Vuk +TU k+1uk dx 

< E (k+ l)+E (k) < 2E (u ), 

while fQ uk f (Uk) dx > " f(Uk) dx > yi. Hence, EZl k+ 
Il < 2E(u0) 

k+1 Since yi > 0 for every i, this gives the claimed bound for the pit . Now 
(4.2) combined with the strong L 2(Q)-convergence of u k+- u - 0 and the 

L (Q)-boundedness of fi ' uk) yields - I 
k+1 

-uII HI 0 as k - 
x . The proof 

of Theorem 4.1 is therefore complete. n 
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We can also give the 

Proof of Corollary 4.2. We recall from Lemma 3.1 that 

E(u k+l 
_ Uk) < E (Uk)-E (uk+l) 

and consequently that IIku k+I -UkIHI ) 0 as k -* xo. Therefore, using Theorem 
4.1, we can invoke the argument of [7, Proposition 2]. For the convenience of 
the reader, we will repeat this simple argument. 

It suffices to show that if A(u0) contains one isolated point u, then the entire 

sequence converges to u. If u is isolated, then we can find disjoint neighbor- 

hoods N1 containing u, and N2 containing all other elements of A(u0). Let 
1~~~~~~~~~~~+ 

2e = dist(N1, N2). There is an integer k, so that 11uk+I - U HH < e for all 
k 

k > k. Also, there is an integer k2 so that for k > k, uk belongs to either 

N1 or N2. For otherwise, we can find a subsequence of uk lying in the com- 

plement of N1 U N2, contradicting Theorem 4.1. Since u E A(u0), we can find 

uk E N1 with k > max(k1, k2). But then uk+I E N1, since dist(u k+, N e. 

By induction, U' E N1 for j > k, and the proposition is proved. 5 

The remainder of the section will be devoted to the proof of Lemma 4.3. 

Proof of Lemma 4.3. We first estimate IA 1 ..., _IA _II. Recalling that A(s) = 

En=I Ai'(s) and A =A(i), i=O. ..., n - 1, we have 

AO = 0 and Ai = Ai- 1 + XiAi 1 

(4.3) A(s) =Ai1 +Ai(s- i- ) on [avi-, il. 

Since Ai = (Ai - Ai- )/Aai, it suffices to bound IAJ, ..., IAn-. We fix the 

index i so that 

(4.4) IAiI max 1Aj. 
i<j<n-I J 

Then 

(4.5) IA(s)I > I 
IAiA for s E I := [i - 'Aci ai -a Ai' 

since IRiI < 2JAil/Ai . 
Let +(s) be a Lipschitz cutoff function with +(s) = 1 for s E I, +(s) = 0 

for s < vi = I(ai- + ai) and s > vi, and 0 < +(s) < 1. Using +(u) as a test 

function in (4.1), we have the identity 

(4.6) f q (u)1Vu 2dx = f $(u)A(u)dx. 

Since A(s) has one sign on the support of +(s), it follows from (4.6) that 

(4.7 /U IA(u)I dx < f 0(u)jA(u)I dx < f 1'(u), Vu2 dx 

(4.7) fass 6d 
< 

6 
IVU12 dx = 12(Aui) tE(u). 
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Combining (4.7) and (4.5), we have 

(4.8) IAj| < 36E(u) 

Thus, to estimate IAiI, we need a positive lower bound for I{u E II. 
Let a = vi- 'Au1 and a' = i- IAC, so that I = [a, a] c(v 1 vi) with 

II = Au for some 1 < i < n - 1. Define 

A (S,= (S , _ CT) (S _ v/)2 

Then 

(4.9) 14(u)IlLN/(N- 1 > IIII{U > an-1}l (N- )/N 

On the other hand, by the Sobolev inequality, 

(4.10) L4(U)LN/(N-) < CN J A (u)IVuI dx < CN?fu E }| ( ) 

and by the usual Poincar6 inequality applied to (u - n_-,)+ 

(4.11) 2Fn(u) = (u - an_1)+122 < CNI{U > an_1}1 E(a). 

Combining (4.9)-(4.1 1) gives the required lower bound 

(4.12) n{u E I}U ? CN)IFu N-i1 E() -N 

Together with (4.11), this gives the desired estimate 
UN+1 - - NFN - 

(4.13) IA ? CNE(u) Fn(U) (Aa ) 
3 < C N+1 7-N (AT)3 

To complete the proof, we need only to bound LIn| . We note that 

-Au = Anal + An(U -an-1l) in {u > an-_11} 
Thus, using (u - an- )+ as a test function, we obtain the identity 

(4.14) I V(U _ 1)12 dx = A f(u - an-,)+ dx + 2XnFn(u). 

Therefore, 

(4.15) 
YnIn < EO + 2 

fn-|udx 
< E0 + CNIAnl I l l/2+l/NEi/2 

Recalling (4.13), this gives the desired estimate 

(4.16) XiA ? C(Q, E N)YN (Aa)3 

This completes the proof of Lemma 4.3. o 

5. GENERALIZATIONS 

In this section we give three separate extensions of the prototype problems ex- 
amined in the preceding sections. Since each extension is fairly straightforward, 
our discussion here will be brief. 
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First, we introduce a free boundary into problems (P.,) and (Pn) . This is 
accomplished simply by imposing the constraints (2.4) (c) only on the interval 

co < a < +xo for some given c0 > 0. Thus, the problem (P.,) becomes 

(5.1) E(u) -*min subject to (u - a)+ dx = f3(a), co < a < +0*. 

Similarly, the problem (Pa) is defined with respect to a partition 0 < co < a, < 
... < an- I < an = +x0, and the constraints for (Pa) are defined by (2.8), (2.9) 
as before. Now, however, fi(s) = 0 for all s < co and i = 1, ... , n. The 
validity of Theorem 2.2 remains unaltered in this extension, and a solution u 
of (Pa) satisfies -Au = A(u) in Q, u = 0 on OQ, where 

A(s) = {En Z Ji f(s) if s > a. 

This may be interpreted as the equivalent free-boundary problem 

(5.2) -Au = { In 
nO 

< u < aQ} 
A(u) in {u > c0},5 

VVuI is continuous across {u = co}, 

the latter being the free-boundary condition. As a simple illustration, we note 
that the case of one constraint (n = 1) yields 

-Au=A1(u-a0)+ inQ. u=O onOQ, 

fKQ(U -_ 0)2 dx = 2y1, 
which is a familiar free-boundary problem. 

The algorithm (An) constructed in ?3 and its convergence properties estab- 
lished in ?4 admit immediate generalizations in the extension just described. In- 
deed, the only essential changes in the above development needed to include the 
free boundary into (Pa) can be summarized as follows. A term TG,(uk - co)_ 
is subtracted from the right-hand side of (3.14), and a corresponding term 
Tr(ff(v), GT(v-o0) ) isaddedto cl(v) in (3.12); aij is unchanged. Withthese 
modifications in place, the theory described above extends to the free-boundary 
case. 

Next, we consider an extension of (PO,) and (Pa) (without free boundaries) 
which allows u and -i to change sign in Q. The requirement that 

- > 0 in 
Q is now relaxed, and the constraints in (PO,) are replaced by 

{ fQ(u - a) +dx=flA+() forO<a<+oo, 

fQ(u - v)_ dx = 8-(a) for - oo < a < O 

where fl+ f- are defined by -i (so that the above holds with ui substituted 
for u). The extension of (Pn) is then defined with respect to two partitions 

0 < < = -00 f som n and m The fuctoals = > ( a1 > > - > 
Cm= -x( for some n and m. The functionals F.+ (i = I,.. n) and Fj- 
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(i = 1, ..., m) corresponding to these partitions are defined as before by the 
convex functions 

+ 
(S- a+ 

2 
-+2 

fe(S) = 2 -1)+ i + 

fj (S) =2 (j-71)- 2(S-a7j )-; 

also, the constraint values are taken to be 

Yi+= L fl(a)da, yj = j f(ar)du. 

The constraints for (Pa) are therefore replaced by the n + m constraints 
F.+(u) = yj+, F (u) = yf, and so an analogous variational problem is de- 
fined, which we shall call (Pnm). If each y+ > 0 and each yf > 0, then the 
analogue of Theorem 2.2 holds, and a solution of (Pn m) satisfies -Au = A(u) 
in Q, u = 0 on OQ, where now 

n m 

A(s) = E7(Jn)' (S) +S 7(j fj (s) 
i=1 j=1 

a piecewise linear function on -ox < s < +x which is increasing whenever 
A+ > O and 2- > 0 for every i and j. 

Again, the algorithm and its convergence properties require no essential 
changes to handle the problem (Pn m) . 

Finally, we remark that a variable-coefficient version of (Pn) can be treated 
as a straightforward extension of the prototype problem. In this version the 
objective and constraint functionals are taken to be 

(u) = E tE a,,pq u ux + a(x)u dx, 

Fi(u) = f b(x)fi(u) dx, 

where the functions apq(x), a(x), b(x) belong to C&(Q) (O < a < 1) and 
satisfy the conditions 

N 

E apq(x)$p q > 01?12 for all E N, 
p, q=1 

a(x) > 0, b(x) > 6', 

uniformly for x E Q for some positive constants 0 and 6'. Then a solution 
of this version of (Pn) solves the nonlinear elliptic eigenvalue problem 

- E 
a 

apq 
9 

u) +a(x)u=b(x)A(u) inQ, u=O on0Q, 
pq (s ias bX 

where A(s) is as before. 
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It is straightforward to check that our development in ??2-4, as well as the 
two preceding extensions, can be carried out in this more general context. 

6. APPENDIX 1. VARIATIONAL PROBLEMS IN MAGNETOHYDRODYNAMICS 

Equilibrium problems in magnetohydrodynamics (MHD) supply some of the 
main examples of multiconstrained variational problems of the kind that we 
study in this paper. These model problems in plasma physics arise both in 
controlled thermonuclear fusion research and in astrophysics. The classical ap- 
proach to solving these problems makes use of a general variational principle 
which characterizes equilibrium configurations of a plasma assumed to be gov- 
erned by ideal MHD. This principle depends upon determining the complete 
family of quantities (expressed as volume integrals) which are conserved un- 
der the governing evolution equations. Then it identifies an equilibrium as a 
minimizer of the total energy over the class of configurations which maintain 
given values of all of the other conserved quantities. Although this general 
characterization can be stated formally for fully three-dimensional configura- 
tions, we shall consider it only under an assumption of spatial symmetry- 
either two-dimensionality, axial symmetry, or helical symmetry-since then it 
takes a simpler and more tractable form. This particular form of the variational 
principle for symmetric equilibrium configurations has been given by Woltjer 
[21, 22], who has also determined the complete family of conserved quantities. 
(He emphasizes the axially symmetric case, but his analysis can be modified to 
apply as well to the other symmetric cases.) We shall briefly describe the case 
of magneto-static equilibrium (for which there is no mass flow) in two dimen- 
sions; we shall leave aside the minor technical modifications needed to treat 
axial or helical symmetry, since, even though these cases are important in real 
applications, they are the same conceptually. 

We begin by posing an abstract variational problem similar to (PO,) which 
encompasses the static physical problems of interest as special cases. Let Q C 2 

be the cross-section of a cylindrical domain Q x IR, let (xl, x2) denote the 
variable point in Q, and let x3 be the ignorable coordinate. Consider the 
minimization problem 

( f[2I VuI2 + h,(v1) + h2(v2)] dx - min over 
(6.1) j f v1(u- v) dx = fl (a) 

f2 v2(U -a)+ dx = fl2(o),5 

where the admissible triple (u, v1, v2) belongs to H (Q) x Lrl (Q) x Lr2 (Q) 
for some 1 < r1, r2 < +oo. The given functions h, and h2 are assumed to 
be smooth and strictly convex with h1(O) = h'(O) = 0 and hi(z) = O( zlrl) as 
jzj x-+ (1 = 1, 2). As in (P.), the two infinite families of constraints are 
parametrized by a E [ao, +x0), and 81 (a) and 42(a) are given data. 

The physical interpretation of (6.1) is as follows. The magnetic field B = 

(B1, B2 B 3), which is independent of x3, satisfies V - B = 0 in Q x R and 
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hence admits a representation B = (ux , _UX, VI), where u is the flux func- 
tion (or stream function) for its poloidal part and VI is its toroidal part. The 
magnetic energy density (per unit volume) is then 1 B12 

1, 
= 2 + IV12 . The 

mass density p of the plasma is represented by v2 . The internal energy density 
(per unit volume) is given by pY / (y - 1), in accordance with the polytropic law 
p = pY with p denoting pressure. Therefore, the objective functional represents 
total (potential) energy when we put 

1 2 - 
Y 

(6.2) hi(vI) = -vI, h2(V2) 21 

The interpretation of the constraints relies on differentiating them with respect 
to the parameter a, for then there results 

v dx =-1(a), V dx 

All of these integrals are extended over the interior of a (cylindrical) flux surface 
{u = a}-that is, a flux tube {u > a}. But ideal MHD requires that, in 
evolution, each flux tube must move with the flow preserving its strength and 
mass. It is readily verified that the above integrals are, respectively, the toroidal 
flux and mass of the flux tube {u > a}, and hence they are conserved quantities. 
(The conservation of poloidal fluxes is implicit in the parametrization which 
uses the values of the flux function u.) 

As is shown in Lemma 2.1, the constraints in (6.1) imply corresponding 
constraints on all integrals of the form 

fviq(u)dx, 

where q is an arbitrary continuous function on [co, +oo). Indeed, the latter 
integrals are used to express the family of conserved quantities in [21, 22]. 
Roughly speaking, the functions (s - a)+ (a0 < a < +oo) are chosen here 
as a particularly useful basis for the space of all functions q(s). This allows 
us to give the above physical interpretation to these integrals. Moreover, this 
also permits us to discretize the constraints in precisely the same way as the 
prototype problem (Pa) is formed from (PO,). Recalling the definition (2.9), 
we replace the infinite family of constraints in (6.1) by 

{a v f (u) dx = 
y"'n 

relative to a (fixed) partition 0 < co < al <. < an- < an = +oo. The result- 
ing discretized version of the minimization problem (6.1) is now accessible to 
analysis and computation. Its variational equations can be calculated formally 
to be 

( -Au = v (U) + V @2(U) 

(6.3) hl (v1) =dIl(u), 

hl(v2) = 
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where, by virtue of the Lagrange multiplier rule, 
n 

(6.4) 01(s) E= Alifi(s) (1 = 1, 2) 
i= 1 

for some multipliers Ali. The observation that v1 and v2 enter into these equi- 
librium equations algebraically suggests immediately that they be eliminated. 
This yields an equation for u alone: 

(6.5) -A\u = (hl ) l((D (u))(D (u) + (h')1(?()?'() 

which is a generalized form of the familiar Grad-Shafranov equation. In order 
to express this equation more plainly, it is useful to introduce the convex con- 
jugate functions to hl (1 = 1, 2) defined by hp(z*) = supz zz* - hl(z). Then 
(6.5) can be written simply as 

(6.6) -Au = Pj (u) + P (u) with P1 (s) :=h7 (% (s)) . 

Returning to the physical case (6.2), we find that 

** 1 * 2 ** /2-_i\1~ 
h*(z Z) = . j ) , h2(z) = - Z) 

and consequently we obtain the relations 

1 2 1 P212 

It follows from these relations that the profile functions Pj and P2 in (6.6) 
have the usual interpretations as current and pressure profiles, respectively, in 
the Grad-Shafranov equation [3, Chapter 4]. 

Of course, the principal novelty inherent in (6.6) lies in the fact that the 
functions P/ are not specified, but are instead determined along with the solu- 
tion u through (6.4). We see therefore that (6.6) is a "generalized (or queer) 
differential equation" (GDE) in the sense of Grad et al. [12, 13]. However, our 
viewpoint differs from that proposed by Grad, who viewed a GDE as a highly 
implicit equation for u which combined the elliptic operation A and differen- 
tiation with respect to the volume variable a = al(a) = I{ u > a} I. Rather, we 
recognize (6.6) as merely the vl, v2-eliminated form of the standard variational 
equations for a solution triple (u, vl, v2) of the classical minimization problem 
(6.1). Thus, by treating that variational problem directly we obviate the need to 
introduce the notion of a GDE. On the other hand, the compelling reasons put 
forward by Grad and others for prescribing conserved quantities associated with 
the evolution equations governing ideal MHD in place of the current and pres- 
sure profiles in the Grad-Shafranov equation retain their validity; indeed, they 
provide the main justification for our multiconstrained variational approach. 

The relevant physical problem also involves a free boundary, the interface 
between the (confined) plasma and the (surrounding) vacuum. This feature can 
be introduced (as in ?5) by fixing co > 0 in (6.1). Then the free boundary is 
{ u = co }, and {u > co} and {0 < u < co are the plasma and vacuum regions, 
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respectively. The flux constant co effectively specifies the (total) poloidal flux 
in the vacuum region. An additional constraint fu VI dx = y1o can be imposed 
to specify the (total) toroidal flux in the vacuum region. (This is necessary 
since the basis functions J (s) vanish for s < co.) The mass density v2 will 
be positive in {u > co} and vanish in {0 < u < co} whenever the solution 
satisfies A2i > 0 (i = 1, ... , n), and this condition may be expected to hold 
in general. The free boundary, 0 {v2 > 0}, is therefore a flux surface on which 
pressure vanishes, as required by the physical interface conditions. 

We conclude this discussion by noting some special cases of the above de- 
velopment. First, we consider the case of an incompressible fluid (or plasma), 
which we obtain by setting v2 = 1 (uniform density) in (6.1). Equivalently, 
we may achieve this limit case by taking the exponent y to infinity; then we 
can verify that the compressible solutions tend to an incompressible solution in 
the limit. Second, we have the case of a purely poloidal magnetic field, which 
we get by putting v1 = 0. This specialization of (6.1) results in a substantial 
simplification, since one family of constraints is dropped. Third, we combine 
the two preceding cases and we arrive at the prototype problem (P.,) or its 
discretized form (Pn), both posed in terms of u alone. 

With this result in mind, we remark that it is possible to construct algorithms 
analogous to (An) which iteratively solve the more general problem (6.1), at 
least under favorable circumstances. Moreover, a convergence theory similar to 
that given in ??3-5 for the prototype problem can be furnished for this general 
problkn, although it is considerably more complicated owing to the lack of joint 
convexity of the constraint functionals in (6.1). Our sequel paper [8] addresses 
these problems and documents the results of implemented computations based 
on the more general algorithm. 
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